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The shape of data

What do we mean by data?

FIGURE — A point cloud
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What do we mean by data
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FI1GURE — A Data set with a loop
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What do we mean by data

FIGURE — A data set with three tendrils
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What do we mean by data
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FIGURE — A data set with loop corrupted by noises
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Table des matiéres

@ The building units of our spaces
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Motivation

Definition :p-simplex

A p-dimensional simplex (or p-simplex) o” = [eg, ey, ..., ] is
the smallest convex set in a Euclidean space R™ containing
the p + 1 points ey, ..., €,

Example :

Ficure - 0,1,2,3 simplex
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Definition : Simplicial complex

A simplicial complex is a set composed of points, line
segments, triangles, and their p-dimensional counterparts.
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Definition : Simplicial complex

A simplicial complex is a set composed of points, line
segments, triangles, and their p-dimensional counterparts.

Example :

FIGURE — Simplicial complex
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Definition : Simplicial complex
A simplicial complex is a finite set of simplices satisfying the
following conditions :

© For all simplices A € K with « a face of A, we have

a € K.

Q A B e K= A, B are properly situated.
The dimension of a complex is the maximum dimension of the
simplices contained in it.
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Example :

&

F1GURE — Simplicial complex on the left, not the case on the right
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Definition : Nerve
The nerve of a family D of subsets (c;);e/, denoted N'(D), is
the abstract simplicial complex K whose elements are all

sub-families (¢;);cy such that

ﬂC;%@

i€l
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Definition : Vietoris-Rips complex

Let (P, d) be a metric space where P is a point set. Given a
real r > 0, the Vietoris-Rips complex is the abstract simplicial
complex R"(P) where a simplex ¢ € R"(P) if and only if
d(p, q) < r for every pair of vertices p, q € 0.

| \

Definition : Cech complex

The Cech complex C"('P) is defined to be the nerve of the
5-radius ball B(p,5)/p € P,
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Theorem ( Nerve lemma )

Let F be a finite collection of closed, convex sets in a
Euclidean space. Then the nerve of F and the union of the
sets in F are homotopic.
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Any data have a shape, and any shape have a
meaning.
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© Persistent homology
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Motivation

FIGURE — A fixed set of points [upper left] can be completed to a
a Cech complex [lower left] or to a Rips complex [lower right]
based on a proximity parameter ¢ [upper right].
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Which ¢ 7. Converting a point cloud data set into a global
complex requires a choice of parameter ¢.
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@ Filtration

19/32] LAMINE Zakaria Persistent homology



Definition

A filtration F of complex K is any sequence of sub-complexes
K; of K verifying

gCKiC...CK, =K.
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Motivation

72130

FIGURE — example of filtration
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We say that a homology class is "born” in K; when it does not
exist in the image of the application induced by inclusion

Ki_1 C K.

HIE(KJ. J. I_Irr(-K

FIGURE — Birth of a homology class
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It will be said that it "dies” in Kj when it does not exist in the
image of the application induced by inclusion Ki_; C Kj_; but
that it exists in the image of the induced application

Ki_1 C KJ .

e
-

HPL(K—l l) Hu(}-{ HH.(‘R'} l HH.(K’

FI1GURE — Death of a homology class
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@ Persistent diagram and bar codes
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Persistent diagrams summarize this information as
two — dimensional point sets with multiplicities.
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given a map f : X — R and a real t, we define R; as the
preimage of |—oco; t], (R: = f~1]—o0; t]) the idea of persistent
consists in calculating the homology groups H,(R;) as a
function of t.

FIGURE — The graph and the associated diagram of f
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FIGURE — Example of bar codes
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© Stability of the persistent diagram
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Definition : Bottelneck distance

Let X be a topological space with two continuous functions
fig: X = R and let Dgm(f), Dgm(g) their respective
diagrams. We define their bottleneck distance by taking the
infinitum over all supremums

dg(Dgm(f), Dgm(g)) := igfsngX = n(x)ecs

where x € Dgm(f) and 1 : Dgm(f) — Dgm(g) ranges over all
bijections, while ||x — y||« = max|x|,|y| is the usual L, norm.
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dg(Dgm(f), Dgm(g)) < [|f — gllco-
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FIGURE — Left : two functions with small distance. Right : the
corresponding two persistence diagrams with small bottleneck
distance.
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Thank YOU .
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