Persistent homology A new tool for data analysis

LAMINE Zakaria

25 Novembre 2017

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

The shape of data

What do we mean by data?

$F_{IGURE} - A$ point cloud

What do we mean by data

 $\ensuremath{\operatorname{FIGURE}}$ – A Data set with a loop

What do we mean by data

 Figure – A data set with three tendrils

What do we mean by data

 Figure – A data set with loop corrupted by noises

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

tableofcontents Table des matières

1 The building units of our spaces

Persistent homology

3 Filtration

- Persistent diagram and bar codes
- 5 Stability of the persistent diagram

Motivation

Definition :p-simplex

A p-dimensional simplex (or p-simplex) $\sigma^{p} = [e_{0}, e_{1}, ..., e_{p}]$ is the smallest convex set in a Euclidean space R^{m} containing the p + 1 points $e_{0}, ..., e_{p}$

Definition : Simplicial complex

A simplicial complex is a set composed of points, line segments, triangles, and their *p*-dimensional counterparts.

Definition : Simplicial complex

A simplicial complex is a set composed of points, line segments, triangles, and their *p*-dimensional counterparts.

Definition : Simplicial complex

A simplicial complex is a finite set of simplices satisfying the following conditions :

- For all simplices $A \in K$ with α a face of A, we have $\alpha \in K$.
- **2** $A, B \in K \Rightarrow A, B$ are properly situated.

The dimension of a complex is the maximum dimension of the simplices contained in it.

Motivation

Definition : Nerve

The nerve of a family D of subsets $(c_i)_{i \in I}$, denoted $\mathcal{N}(D)$, is the abstract simplicial complex \mathcal{K} whose elements are all sub-families $(c_i)_{i \in J}$ such that

$$\bigcap_{i\in J}c_i\neq \emptyset$$

Definition : Vietoris-Rips complex

Let (\mathcal{P}, d) be a metric space where \mathcal{P} is a point set. Given a real r > 0, the Vietoris-Rips complex is the abstract simplicial complex $R^r(\mathcal{P})$ where a simplex $\sigma \in R^r(\mathcal{P})$ if and only if $d(p, q) \leq r$ for every pair of vertices $p, q \in \sigma$.

Definition : Cech complex

The Cech complex $C^r(\mathcal{P})$ is defined to be the nerve of the $\frac{r}{2}$ -radius ball $B(p, \frac{r}{2})/p \in \mathcal{P}$,

Theorem (Nerve lemma)

Let F be a finite collection of closed, convex sets in a Euclidean space. Then the nerve of F and the union of the sets in F are homotopic.

Any data have a shape, and any shape have a meaning.

• = • •

э

Table des matières

The building units of our spaces

2 Persistent homology

3 Filtration

- Persistent diagram and bar codes
- 5 Stability of the persistent diagram

Motivation

FIGURE – A fixed set of points [upper left] can be completed to a a Cech complex [lower left] or to a Rips complex [lower right] based on a proximity parameter ε [upper right].

Which ε ?. Converting a point cloud data set into a global complex requires a choice of parameter ε .

Table des matières

The building units of our spaces

2 Persistent homology

Filtration

- Persistent diagram and bar codes
- 5 Stability of the persistent diagram

Definition

A filtration \mathcal{F} of complex K is any sequence of sub-complexes K_i of K verifying

$$\emptyset \subseteq K_1 \subset \ldots \subset K_n = K.$$

Persistent homology

Motivation

 $\ensuremath{\operatorname{FIGURE}}$ – example of filtration

→ < ∃ →</p>

We say that a homology class is "born" in K_i when it does not exist in the image of the application induced by inclusion $K_{i-1} \subset K_i$.

 $\ensuremath{\operatorname{Figure}}$ – Birth of a homology class

It will be said that it "dies" in K_j when it does not exist in the image of the application induced by inclusion $K_{i-1} \subset K_{j-1}$ but that it exists in the image of the induced application $K_{i-1} \subset K_j$.

 $\ensuremath{\operatorname{FIGURE}}$ – Death of a homology class

Table des matières

The building units of our spaces

2 Persistent homology

3 Filtration

- Persistent diagram and bar codes
 - 5 Stability of the persistent diagram

Persistent diagrams summarize this information as two - dimensional point sets with multiplicities.

given a map $f : X \longrightarrow \mathbb{R}$ and a real t, we define R_t as the preimage of $]-\infty; t]$, $(R_t = f^{-1}]-\infty; t]$) the idea of persistent consists in calculating the homology groups $H_n(R_t)$ as a function of t.

FIGURE – The graph and the associated diagram of f

 Figure – Example of bar codes

Persistent homology

э

Table des matières

The building units of our spaces

2 Persistent homology

3 Filtration

- Persistent diagram and bar codes
- 5 Stability of the persistent diagram

Definition : Bottelneck distance

Let X be a topological space with two continuous functions $f; g: X \Rightarrow R$ and let Dgm(f), Dgm(g) their respective diagrams. We define their bottleneck distance by taking the infinitum over all supremums

$$d_B(\mathrm{Dgm}(f),\mathrm{Dgm}(g)) := \inf_{\eta} \sup_{x} ||x - \eta(x)||_{\infty},$$

where $x \in \text{Dgm}(f)$ and $\eta : \text{Dgm}(f) \to \text{Dgm}(g)$ ranges over all bijections, while $||x - y||_{\infty} = max|x|, |y|$ is the usual L_{∞} norm.

Theorem

$$d_B(\mathrm{Dgm}(f),\mathrm{Dgm}(g)) \leqslant ||f-g||_{\infty}.$$

æ

 ${\rm FIGURE}$ – Left : two functions with small distance. Right : the corresponding two persistence diagrams with small bottleneck distance.

Persistent homology

Thank YOU .

æ